366834

Introduction to **Blood Spatter Analysis Lab Activity**

Aligned With All Published National Standards

table of contents

overview and materials list	2
standards alignment	3
learning objectives	4
time requirement	4
safety precautions	5
vocabulary	6
background	
pre-lab questions	10
pre-lab preparation	11
part A	13
part B	17
part C	20
part D	22
part E	24
assessment	27

Ward's in-house scientists are always on call to assist you with your questions. Our experts can provide personal solutions and product advice for your curriculum. Email sciencehelp@vwr.com or call 800-962-2660 to get started.

framework for K-12 science education © 2012

* The Dimension I practices listed below are called out as **bold** words throughout the activity.

DIMENSION 1 Science and Engineering Practices	x	Asking questions (for science) and defining problems (for engineering)	x	Use mathematics and computational thinking
	x	Developing and using models	x	Constructing explanations (for science) and designing solutions (for engineering)
	x	Planning and carrying out investigations	x	Engaging in argument from evidence
	x	Analyzing and interpreting data	x	Obtaining, evaluating, and communicating information
ENSION 2 s Cutting incepts	x	Patterns		Energy and matter: Flows, cycles, and conservation
	x	Cause and effect: Mechanism and explanation		Structure and function
M S O	x	Scale, proportion, and quantity		Stability and change
ΞŪ				
		Systems and system models		

	Discipline	Core Idea Focus
Core Concepts	Physical Science	PS2: Motion and Stability: Forces and Interactions

x Indicates standards covered in activity

next generation science standards © 2013

Middle School Standards Covered	High School Standards Covered
MS.PS2-1: Apply Newton's Third Law to design a solution to a problem involving the motion of two colliding objects.	HS.PS2-1: Analyze data to support the claim that Newton's second law of motion describes the mathematical relationship among the net force on a macroscopic object, its mass, and its acceleration.
MS.PS2-2: Plan an investigation to provide evidence that the change in an object's motion depends on the sum of the forces on the object and the mass of the object.	HS.PS2-4: Use mathematical representations of Newton's Law of Gravitation and Coulomb's Law to describe and predict the gravitational and electrostatic forces between objects.
MS.PS2-4: Construct and present arguments using evidence to support the claims that gravitational interactions are attractive and depend on the masses of interacting objects.	

DIMENSION 3

standards/learning objectives

national science education standards © 1996

Conte	nt Standards (K-12)		
Х	Systems, order, and organization		Evolution and equilibrium
Х	Evidence, models, and explanation		Form and Function
X	Constancy, change, and measurement		
Physic	cal Science Standards Middle School	Physical Science Standards High School	
X	Motions and Forces	x	Motions and Forces

x Indicates standards covered in activity

benchmarks for science literacy (AAAS, © 1993)

1 The Neture of Calence	1B: Scientific Inquiry
	1C: The Scientific Enterprise
2 The Nature of Mathematics	2A: Patterns and Relationships
2. The Nature of Mathematics	2B: Mathematics, Science, and Technology
	4F: Motion
4. The Physical Setting	4G: Forces of Nature
9. The Mathematical World	9C: Shapes
11.Common Themes	11B: Models

activity objectives:

- Establish the relationship between blood dropping height and blood drop diameter
- Recognize patterns around the drop, such as satellite spatter or spines
- Develop an understanding of the common types of bloodstain patterns found at a crime scene
- · Create and examine vertical blood drop patterns on various textured surfaces
- Acquire a qualitative understanding of the relationship between the impact angle of a blood droplet striking a surface versus the shape of the resulting stain
- Differentiate between high velocity and medium velocity impact spatter

time requirement:

Three to four 45-minute periods