366842
 Modeling the Moon's Motion and Phases Lab Activity

Aligned with All Published National Standards

table of contents

overview and materials list 2
curriculum alignment 3
learning objectives 4
time requirement 4
safety precautions 5
vocabulary 6
suggested lesson outline 7
general suggestions for use 9
pre-lab preparation 10
pre-lab questions 11
notes for transparency 1 12
key: transparency 1 13
classroom demonstration 14
student activity 1 16
key: activity 1 17
notes for transparency 2 19
key: transparency 2 21
notes transparency 3 22
key: transparency 3 24
student activity 2 25
key: activity $\mathbf{2}$ worksheet 27
notes 33

framework for K-12 science education © 2012

* The Dimension I practices listed below are called out as bold words throughout the activity.

	x	Asking questions (for science) and defining problems (for engineering)	\times	Use mathematics and computational thinking
	\times	Developing and using models	\times	Constructing explanations (for science) and designing solutions (for engineering)
		Planning and carrying out investigations	\times	Engaging in argument from evidence
	\times	Analyzing and interpreting data	\times	Obtaining, evaluating, and communicating information
	X	Patterns		Energy and matter: Flows, cycles, and conservation
		Cause and effect: Mechanism and explanation		Structure and function
	\times	Scale, proportion, and quantity		Stability and change
	\times	Systems and system models		
$\begin{array}{ll} \frac{2}{2} & \frac{n}{0} \\ \frac{0}{n} & \stackrel{0}{0} \\ \sum_{\dot{U}}^{0} & \frac{c}{0} \\ \sum_{\overline{0}}^{0} \end{array}$	Discipline		Core Idea Focus	
	Earth and Space Science		ESS1: Earth's Place in the Universe	
	Middle School Standards Covered		High School Standards Covered	
	MS.ESS1-1: Develop and use a model of the Earth-sun-moon system to describe the cyclic pattern of lunar phases, eclipses of the sun and moon, and seasons.		HS.ESS1- 4: Use mathematical or computational representations to predict the motion of orbiting objects in the solar system.	

national science education standards © 1996

Content Standards (K-12)		
\mathbf{X}	Systems, order, and organization	
\mathbf{x}	Evidence, models, and explanation	
\mathbf{x}	Constancy, change, and measurement	

Earth and Space Science Standards Middle School		Earth and Space Science Standards High School	
\times	Earth in the Solar System	\times	Origin and Evolution of the Earth System
		\times	Origin and Evolution of the Universe

Indicates standards covered in activity

benchmarks for science literacy (AAAS, © 1993)

1. The Nature of Science	1B: Scientific Inquiry
4. The Physical Setting	4A:The Universe
	4B:The Earth
	11A: Systems
	11C: Constancy and Change

activity objectives:

- To model the motion of the Moon.
- To observe the effects of the Moon's motions on Earth-bound observations.
- To discriminate between rotation and revolution.
- To understand the difference between a lunar month and a sidereal month.

time requirement:

Three 40 minute classes

