366825

Sherlock Bones: Identification of Skeletal Remains Lab Activity

Aligned with All Published National Standards

table of contents

overview and materials list	2
standards alignment	3
learning objectives	4
time requirement	4
safety precautions	5
vocabulary	6
background	7
pre-lab questions	13
pre-lab preparation	14
procedure	15
results and analysis	22
caucasian bones kit results and analysis	24
african bones set results and analysis	31
asian bones set results and analysis	37
assessment	44
notes	49

standards alignment

framework for K-12 science education © 2012

* The Dimension I practices listed below are called out as **bold** words throughout the activity.

Science and Engineering Practices

Asking questions (for science) Use mathematics and computational and defining problems (for X X thinking engineering) Constructing explanations (for science) Developing and using models X X and designing solutions (for engineering) Planning and carrying out Engaging in argument from evidence X X investigations Obtaining, evaluating, and Analyzing and interpreting data X X communicating information

DIMENSION 2Cross Cutting
Concepts

>	K	Patterns		Energy and matter: Flows, cycles, and conservation
		Cause and effect: Mechanism and explanation	×	Structure and function
>	(Scale, proportion, and quantity		Stability and change
\	K	Systems and system models		

DIMENSION 3

Core

Concepts

Discipline	Core Idea Focus
	LS2: Ecosystems: Interactions, Energy, and Dynamics
Life Science	LS3: Heredity: Inheritance and Variations of Traits
	LS4: Biological Evolution: Unity and Diversity

✗ Indicates standards covered in activity

next generation science standards © 2013

High School Standards Covered

HS.LS2-2: Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.

HS.LS3-3: Apply concepts of statistics and probability to explain the variation and distribution of expressed traits in a population.

HS.LS4-3: Apply concepts of statistics and probability to support explanations that organisms with an advantageous heritable trait tend to increase in proportion to organisms lacking this trait.

standards/learning objectives

national science education standards © 1996

Content Standards (K-12)			
×	Systems, order, and organization	×	Evolution and equilibrium
×	Evidence, models, and explanation	×	Form and Function
×	Constancy, change, and measurement		

Life Science Standards Middle School		Life Science Standards High School	
×	Structure and Function in Living Systems	×	Molecular Basis of Heredity
×	Reproduction and Heredity	×	Biological Evolution
×	Populations and Ecosystems		
×	Diversity and Adaptations of Organisms		X Indicates standards covered in activity

benchmarks for science literacy (AAAS, © 1993)

1. The Nature of Science	1B: Scientific Inquiry	
2. The Nature of Mathematics	2A: Patterns and Relationships	
	5A: Diversity of Life	
5. The Living Environment	5B: Heredity	
	5F: Evolution of Life	
C. The House of Occasions	6A: Human Identity	
6. The Human Organism	6B: Human Development	
9. The Mathematical World	9D: Uncertainty	
	11A: Systems	
11. Common Themes	11B: Models	
	11C: Constancy and Change	

activity objectives:

- Become familiar with tools and key skeletal features used by forensic anthropologists
- Utilize qualitative observations and quantitative measurements of skeletal bones to determine the sex, race, height, and approximate age of an individual at the time of death

time requirement:

This activity can take up to two 45-60 minutes lab periods to complete.